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Abstract—Syndrome-trellis codes (STCs) are commonly used
in image steganographic schemes, which aim at minimizing the
embedding distortion, but most distortion models cannot capture
the mutual interaction of embedding modifications (MIEMs). In
this article, a secure halftone image steganographic scheme based
on a feature space and layer embedding is proposed. First, a fea-
ture space is constructed by a characterization method that is
designed based on the statistics of 4 × 4 pixel blocks in halftone
images. Upon the feature space, a generalized steganalyzer with
good classification ability is proposed, which is used to mea-
sure the embedding distortion. As a result, a distortion model
based on a hybrid feature space is constructed, which outper-
forms some state-of-the-art models. Then, as the distortion model
is established on the statistics of local regions, a layer embedding
strategy is proposed to reduce MIEM. It divides the host image
into multiple layers according to their relative positions in 4 × 4
blocks, and the embedding procedure is executed layer by layer.
In each layer, any two pixels are located at different 4×4 blocks
in the original image, and the distortion model makes sure that
the calculation of pixel distortions is independent. Between layers,
the pixel distortions of the current layer are updated according
to the previous embedding modifications, thus reducing the total
embedding distortion. Comparisons with prior schemes demon-
strate that the proposed steganographic scheme achieves high
statistical security when resisting the state-of-the-art steganalysis.
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I. INTRODUCTION

STEGANOGRAPHY, as a branch of data hiding [1]–[3],
aims at hiding secret messages into digital media and

being imperceptible to others [4]–[6]. Different from water-
marking techniques, which is another kind of data hiding and
usually can resist linear or other transformation of digital
images, steganography pays more attention to the statis-
tical security and should provide high integrity of secret
messages. As a kind of digital media, binary images only
have two kinds of states: “0” and “1,” which correspond-
ingly represent the pixel color of black and white. Based on
the characteristic, secret messages are hidden by pixel tog-
gling. Binary images can be roughly divided into two kinds,
including: 1) halftone images and 2) ordinary binary images.
Different from ordinary binary images, halftone images (two-
tone images) are usually transferred from grayscale images
(multitone images) by halftoning techniques, including error
diffusion [7], dithering [8], dot diffusion [9], direct binary
search [10], etc.

In previous works, many existing halftone image data hid-
ing schemes focused on designing a distortion model to select
“slave” pixels after hiding one bit at each pseudorandom posi-
tion at which the pixels located are regarded as “master”
pixels [11], [12]. Data hiding by smart pair toggling (DHSPT)
was proposed by Fu and Au [11] in which a distortion model
is defined to measure the connectivity of master pixels with
neighboring slave pixels. The slave pixel is selected with the
minimum connectivity value. Pair toggling with the human
visual system (PTHVS) was proposed by Guo [12] to improve
the selection of slave pixels. Guo proposed a distortion model
based on the human visual system, which improves the weights
of pixel connectivity along with the horizontal, vertical, and
diagonal directions. However, the master pixels at the pseudo-
random positions still cause “salt-and-pepper” clusters, and the
visual quality is destroyed when the secret message’s length
increases and the security performance decreases.

In ordinary binary image steganography, many schemes
proposed various embedding distortion models to evaluate
the pixel distortions, which are different from the strategy of
“master–slave” pixel toggling. Some research on those is based
on statistics [13], [14]. Feng et al. [13] proposed a flipping
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distortion model (FDM) and the alternation of the patterns’
distributions are employed to indicate the pixel flippability.
Yeung et al. [14] presented a statistical prediction distortion
model (PDM) and introduced the concept of “uncertainty” to
evaluate the pixel distortions. Although the image expression
between ordinary binary images and halftone images is differ-
ent, the statistics-based FDM and PDM can be used to evaluate
the embedding distortion for halftone images.

In addition to the establishment of embedding distortion
models, which is an important step in steganographic schemes,
different embedding strategies have a huge impact on the sta-
tistical security of steganography [13]–[17]. Feng et al. [13]
and Lu et al. [15] used superpixels as the cover vector to
embed the message segment by applying the syndrome-trellis
codes (STC) [18] encoder. Yeung et al. [14] demonstrated
that using single pixels to apply the STC encoder outper-
forms using superpixels as STC’s carriers in terms of the
average embedding distortion. However, these strategies do
not consider the mutual interaction of embedding modifi-
cations (MIEMs). Thus, they easily toggle adjacent pixels
simultaneously and enhance the risk of detection by the
steganalyzer.

To exploit MIEM and improve the statistical security,
synchronizing the selection channel [17] and clustering mod-
ification directions [16] were independently proposed for
grayscale image steganography. In their strategies, adjacent
pixels are divided into two nonoverlapped subsets. The pixel
distortions of the second subset are updated according to the
changes of neighboring pixels. Furthermore, Zhang et al. [5]
defined a joint distortion on pixel blocks to exploit MIEM
and decomposed it for minimizing nonadditive distortion with
low computational complexity. However, the schemes [5],
[16], [17] do not consider the statistical region of the initial
distortion model in the embedding procedure. For instance,
Zhang et al. used HILL [19] as their initial distortion whose
cost function should select three filters. One of those filters
has the default size of 15 × 15, which is larger than the block
they used to define their joint distortion. Therefore, the mutual
interaction among the changed pixels cannot be avoided.

This article proposes an embedding distortion model defined
in the feature space to accurately evaluate the embedding
distortion. First, a feature space is constructed by a char-
acterization method which is the statistics of 4 × 4 pixel
blocks. Then, a generalized steganalyzer with good classi-
fication ability is proposed for designing a better distortion
model. Finally, we construct a combined distortion model
based on a hybrid feature space to resist various steganaly-
sis. Consequently, experimental results demonstrate that the
proposed distortion model effectively evaluates the embed-
ding distortion and outperforms the models presented in [13]
and [14].

Furthermore, a layer embedding strategy based on 4 × 4
blocks is proposed to reduce MIEM and improve statistic secu-
rity. It divides the host image into multiple layers and the
embedding procedure executes layer by layer. Any two pix-
els in the same layer are located at different 4 × 4 blocks
but their positions in the block are the same and not affected
by other pixels. That is, the embedding modifications can

avoid mutually interacting in the same layer. Besides, the
pixel value of the current layer is updated according to the
changes of neighboring pixels in the previous layer embed-
ding. As a result, the subsequent embedding positions are
optimized by the STC encoder [18]. Experimental results show
that the proposed layer embedding strategy can reduce the total
distortion and improve statistical security.

In summary, the main contributions of the proposed scheme
are as follows.

1) A distortion measurement based on the feature space
is proposed. Upon it, a generalized steganalyzer with
a good classification ability is used as a guide for
designing the distortion model.

2) A diversified distortion model is proposed. The model
is based on a hybrid feature space and the experimen-
tal results demonstrate that it evaluates the embedding
distortion accurately.

3) A layer embedding strategy is proposed to reduce
MIEM and the embedding modifications do not mutually
interact in each layer. Furthermore, the pixel distor-
tions of the current layer are updated according to the
previous embedding modifications, which reduces the
total distortion.

The remainder of this article is organized as follows. In
Section II, we detail the construction of the embedding distor-
tion models, including a basic model and a combined model.
In Section III, the layer embedding strategy is elaborated.
Section IV shows the entire proposed steganographic scheme.
Section V presents the experimental results and discussion.
Finally, Section VI concludes this article.

II. EMBEDDING DISTORTION MODEL

Due to the principle of minimal impact embed-
ding [20], the design of steganographic schemes can be
decomposed into the investigation of the image model and
coder. In terms of the coder designs, STC [18] is a practical
method to embed messages that can approach the lower
bound of average distortion. Beyond that, a better design of
the image model can also improve the steganographic scheme
to achieve higher statistical security. In this section, we focus
on designing the embedding distortion model based on a
feature space.

A. Basic Model Based on Feature Space

A specific characterization method can map objects into a
specific feature space. Consequently, an object is represented
as a specific feature vector. In the field of image steganal-
ysis [21]–[24], the design of the characterization method is
an important step. They use an appropriate characterization
method to map the cover and stego images into the feature
space so that different categories of images can be clearly iden-
tified. As an adversary of steganalysis, many steganographic
schemes [13], [23] propose a distortion function defined as
the weighted norm of the difference between feature vectors
of the cover and stego images in the chosen feature space.

Although many steganographic schemes have proposed the
distortion model with the same type, applying the feature
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Fig. 1. Example of 4 × 4 block, whose t = T(Ii,j) = 21 + 23 + 25 + 29 +
210 + 212 + 215 = 38442. Ii,j represents the value of the first pixel in the
block.

spaces to halftone images directly does not yield satisfactory
results. HUGO [23] preserves the decomposed SPAM [24]
model, but the SPAM feature is proposed to detect stegano-
graphic algorithms for grayscale images. FDM [13] uses 3×3
local texture patterns to describe the relationship of the tex-
ture structure in ordinary binary images. Although halftone
images are a kind of binary image, the description of halftone
images is totally different from that of ordinary binary images.
Ordinary binary images usually exhibit their contents by edge
lines, while halftone image contents are expressed by pixel
mesh density. Since the aspects of them differ, it is necessary
to design a characterization method for halftone images and
an embedding distortion model upon it.

Halftone images are perceived as continuous-tone images
when viewed at a distance due to the low-pass filtering effect
of human visual perception. To simulate the human visual per-
ception for halftone images better, large scope of statistics
is necessary. Concretely, a histogram of 4 × 4 pixel blocks
is proposed to describe the texture structure distribution for
halftone images. First, let T(Ii,j) denote a function for obtain-
ing the type of a 4 × 4 block shown in Fig. 1. It can be
written as

T
(
Ii,j

) =
3∑

k=0

3∑

l=0

24k+l × Ii+k,j+l (1)

where Ii,j denotes the (i, j)th pixel values in the image I and
Ii+k,j+l ∈ {0, 1}, k, l ∈ {0, 1, 2, 3} denotes the pixel values
of the block. It is worth mentioning that the values of black
and white pixels are assigned with “0” and “1,” respectively.
According to (1), the total number of block types reaches
216 = 65536 and T(Ii,j) ∈ {0, 1, . . . , 65535}. After the func-
tion definition for obtaining the block type, Ht denotes an
element with type t in the normalized histogram of the 4 × 4
blocks, that is

Ht = 1

λ

n1−4∑

i=0

n2−4∑

j=0

δ
(
T
(
Ii,j

) = t
)

(2)

where n1 × n2 is the size of images, δ(•) = 1 only if its argu-
ment is satisfied, otherwise δ(•) = 0, λ is the normalization
factor ensuring that

∑65535
t=0 Ht = 1 and t ∈ {0, 1, . . . , 65535}.

According to (2), an image can be expressed as

v = [H0, H1, . . . , H65535]. (3)

It can be observed that the dimensionality of a feature vector
is 65 536. In steganalysis, a high-dimensional feature vector
easily causes the curse of dimensionality. In contrast, when
designing steganographic schemes, a high-dimensional fea-
ture space is acceptable. For example, HUGO [4] observes
the distribution of cover and stego images in the feature space
and heuristically sets the weight for evaluating pixel toggling
of each feature. However, a heuristic model fails to weight
each feature accurately. This article proposes to utilize feature
space constructed by cover and stego images to accurately
weight each feature. To avoid the curse of dimensionality,
dimensionality reduction is necessary.

Principal component analysis (PCA) [25] is a statistical
procedure that uses an orthogonal transformation to reduce
the dimensionality of feature sets while maximizing the vari-
ance of projected features. PCA is employed to reduce the
dimensionality of the proposed histogram and the final char-
acterization method is denoted as HPCA. To endow HPCA
with a good ability to distinguish the cover and stego images,
PCA maximizes the variance of feature sets M that consists of

M =
[

Mc

Ms

]
(4)

where Mc and Ms denote the feature sets of the cover and
stego images, respectively. They can be written as

Mc = [
vc

1, vc
2, . . . , vc

n, . . . , vc
N

]T

Ms = [
vs

1, vs
2, . . . , vs

n, . . . , vs
N

]T (5)

where vc
n and vs

n, n ∈ {1, 2, . . . , N} represent the nth feature
vector of the cover and simulated stego images, respectively.
N is the total number of training sets in the image database.
The simulated stego images are created by embedding with a
simulated payload, which will be discussed in Section II-B.
According to the principle of PCA, the Hotelling transforma-
tion [25] can transform the feature vector from high to low
dimensionality

M̂ = (M − R)P (6)

where P is a reduced orthogonal transformation matrix and R
consists of the 2N mean vector m = (1/2N)

∑N
n=1(v

c
n + vs

n).
Depending on P, the proposed feature vector v can be trans-
ferred to a low-dimensional vector. It is worth mentioning that
in the proposed scheme, the dimensionality of feature space
is reduced to 600 by PCA.

A good characterization method can be used as a guide for
designing an embedding distortion model [4], [23]. Table I
shows the detection performance comparisons of the different
characterization methods. The experimental setup is the same
as that in Section V. These methods are used to detect the stego
images created by FDMS [13] and PDMS [14]. The results
show that HPCA outperforms PMMTM [26] and RLCM [27]
in detection error. For the reason that HPCA emphasizes some
important features that reflect the information of the image tex-
ture structure and these features differ greatly between cover
and stego images. In this case, these important features are
useful for the training process of the classifier and thus gen-
erating the steganalyzer with high detection accuracy. As a

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 29,2021 at 02:47:28 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

TABLE I
PERFORMANCE COMPARISONS OF THE DIFFERENT STEGANALYZERS IN

TERMS OF THE AVERAGE DETECTION ERROR (PE )

countermeasure, when steganography observes these impor-
tant features change obviously after pixel toggled, the cost of
pixel modifications should be set high. As a result, the impor-
tant features are strongly stressed in the embedding procedure
of steganography and consequently reducing their effect on
steganalysis.

To achieve this goal, the weight for evaluating pixel toggling
of the important features can be set large when designing the
embedding distortion model. When pixel toggling causes sig-
nificant changes in these features, the distortion model will
set these pixel distortions large. Therefore, it avoids toggling
these pixels while hiding secret information. Motivated by the
L2-regularized L2-loss support vector machine (SVM) [28],
a feature space among cover images and stego images is
designed. Specifically, the loss of the hyperplane vector is
defined as follows:

min
w

{
1

2
wTw + C

N∑

n=1

[(
max

(
0, 1 + wTv̂c

n

))2

+ (
max

(
0, 1 − wTv̂s

n

))2
]}

(7)

where v̂c
n = (vc

n − m)P and v̂s
n = (vs

n − m)P are the pro-
jected feature vectors of cover images and stego images,
respectively. We can obtain the normal vector of a separat-
ing hyperplane w which determines the cost weights of each
feature in the feature space. C > 0 is a penalty factor. By
adjusting the parameter C, the penalty degrees of the misclas-
sification error are different. Because the hyperplane is trained
by cover images and the corresponding stego image, there are
two loss items. Specifically, we define that the cover images
as negative samples with label y = −1, while stego images are
positive samples with label y = 1. Therefore, max(0, 1+wTv̂c

n)

is the loss of the cover image while max(0, 1 − wTv̂s
n) is

the loss of the stego image. The hyperplane is trained to
be the best hyperplane to discriminate cover and stego images
so the loss is minimized. The five-fold cross-validation is
conducted to select the best parameter C for each learning
method, with the purpose of obtaining the optimal separating
hyperplane.

Based on the above-mentioned discussion, the distortion
model is defined by the difference between the feature vec-
tor of cover and stego images in the feature space. Given a
cover image X and a stego image Y, the low-dimensional fea-
ture vectors of a cover image v̂X and a stego image v̂Y are

computed by

v̂X =
(

vX − m
)

P

v̂Y =
(

vY − m
)

P (8)

where vX and vY are the normalized histogram of X and Y
computed using (3). Then, the distortion function D(X, Y) is
written as

D(X, Y) =
∣∣∣∣
v̂Xw

‖w‖ − v̂Yw

‖w‖
∣∣∣∣ =

∣
∣(v̂X − v̂Y

)
w

∣
∣

‖w‖ (9)

where ‖ • ‖ is the modulo operation and w is obtained by
solving (7). In fact, by projecting the image X onto the
normal vector w in the feature space, (9) measures the rel-
ative distances between v̂X and the separating hyperplane,
and so is the image Y. The absolute difference between
the two distances is finally defined as D(X, Y). It indi-
cates that the larger the value of D(X, Y), the heavier the
distortion.

When a stego image Yi,j is obtained by only toggling the
(i, j)th pixel of the cover image X, the distortion function
changes to

Di,j � D
(
X, Yi,j) =

∣∣∣
(

v̂X − v̂Yi,j
)

w
∣∣∣

‖w‖ (10)

where v̂Yi,j
denotes the low-dimensional feature vector char-

acterizing the stego image Yi,j. Di,j represents the pixel
distortions of only toggling the (i, j)th pixel in X. This func-
tion can be applied with the STC encoder [18] to minimize
the total distortion.

B. Combined Model Based on Hybrid Feature Space

Upon the discussions in Section II-A, (9) indicates that
a distortion model is associated with the feature vectors of
cover and simulated stego images about HPCA. The Hotelling
transformation [25] in (6) carries out different orthogonal
transformation according to different sets of the simulated
stego images. Consequently, it alters the feature vectors about
HPCA and generates different feature spaces. In this section,
we research the performance of the distortion model based on
different feature spaces and propose a combined model based
on a hybrid feature space.

The generation of the simulated stego images is a key ele-
ment to construct feature spaces. Given an n1 × n2 size cover
image X and an embedding change rate ρ, the simulator
S(X, ρ) is described as follows.

1) A pseudorandom number �i,j, �i,j ∈ [0, 1] is obtained.
2) If �i,j < ρ, the pixel located at (i, j) in the image X is

toggled.
3) Repeat steps 1 and 2 until all the pixels are traversed

and then output the modified image.
It should be noted that ρ refers to not only the embedding
change rate of an image but also the toggling probability of
every pixel. By adjusting the embedding change rate ρ, we
use the simulator S(X, ρ) to obtain several sets of the simu-
lated stego images. Based on a specific set of cover and stego
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(a) (b)

Fig. 2. Performance comparisons of the steganographic schemes applied with different distortion models Dρ in terms of the average detection error (PE).
The depiction of (a) and (b) is the same, but the variables on the x-axis are different. (a) Embedding message length lI. (b) Embedding change rate ρ.

images, we acquire a basic embedding distortion model Dρ

according to (9).
In order to observe the evaluation effect of different Dρ ,

the performance comparisons between several Dρ , ρ = 1/2k

and k ∈ {5, 6, . . . , 11} are set. For a fair comparison, an
ideal encoder EI(X, lI, DT) where DT = Dρ elaborated in
Section V-B is employed to generate the ideal stego images.
The steganalysis performance of the detectors which are
trained by using PMMTM [26] with soft-margin SVMs [29]
is shown in Fig. 2. The depiction of Fig. 2(a) and (b) is the
same, but the variables on the x-axis are different, Fig. 2(a) is
the embedding message length lI, and Fig. 2(b) is the embed-
ding change rate ρ. Fig. 2 illustrates that the steganographic
scheme applied with the distortion model D1/512 outperforms
those of the other models. The simulated stego images with
appropriate ρ make the distortion evaluation better and thus the
ideal stego images are not easily detected by steganalyzers. In
addition, Fig. 2(b) illustrates that when the payload is fixed,
as ρ increases, the detection error first rises and then falls.
It further indicates that the simulated stego images with too
large or small ρ are unsuitable for distortion model construc-
tion. For the reason that the appropriate ρ can motivate the
encoder to generate the simulated stego images whose number
of toggled pixels is suitable for PCA to extract key features.
From the figure, it can be concluded that the most suitable
ρ is 1/512 to generate the ideal stego images when resisting
the detector with PMMTM. In practice, the designed stegano-
graphic scheme should resist various steganalysis instead of
only PMMTM. Therefore, this article produces a combined
distortion model below.

Based on the above discussion, to produce a combined
embedding distortion model, the maximal distortion among
different Dρ is set as the final model

max
ρ

{
Dρ

i,j

}
, ρ ∈ {1/256, 1/512, 1/1024} (11)

where Dρ
i,j denotes the (i, j)th pixel distortions in the basic

distortion model Dρ according to (10). The proposed scheme

(a) (b)

Fig. 3. Image division of the layer embedding strategy. (a) Red blocks repre-
sent the nonoverlapped blocks, green pixels are the pixels in the single layer
and the region of the black block is the mutually impact area when the central
green pixel is toggled. (b) Number in the pixels stands for the layer number
and the layers will be embedded secret messages orderly. When embedding
secret messages that are assigned to the layer, pixels in the corresponding layer
will be extracted to calculate the distortion and embedded secret messages.

selects three basic models centered with D1/512 which achieves
the best performance in the comparisons. The maximum
operation insures the steganographic algorithm to stress the
maximum distortion that occurs in the three basic models.

III. LAYER EMBEDDING

In this section, a layer embedding strategy that includes
single-layer and multilayer embedding is proposed to reduce
MIEM. The single-layer embedding is the basis of the
multilayer embedding and the latter strategy solves the short-
age of the former strategy.

A. Single-Layer Embedding

Some previous researches demonstrated that both additive
distortion functions and additive-approximate distortion func-
tions cannot capture the fact that executing the embedding
modifications in a group of adjacent pixels will likely have a
smaller statistical impact than changing the same number of
isolated pixels [17]. As a result, the MIEMs increase and the
performance of statistical undetectability decreases in practice.
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(a) (b)

Fig. 4. Comparisons between the single-layer embedding strategy and the random embedding strategy, in terms of (a) average distortion and (b) average
detection error (PE).

To reduce MIEM and improve the statistical undetectabil-
ity, a layer-extraction method is proposed to construct a single
layer with some pixels that do not have a mutual impact based
on the proposed distortion model. In this method, an image is
first divided into 4 × 4 nonoverlapped blocks. Then, the pix-
els that have the same position in every block are extracted
to construct the subimage in a single layer. In the same way,
the pixel distortions are also extracted to construct the subdis-
tortion map. Fig. 3 illustrates the image division of the layer
embedding strategy. Fig. 3(a) shows that the red blocks rep-
resent the 4 × 4 nonoverlapped blocks. The green pixels are
extracted to construct the subimage. According to Di,j, the
black block illustrates the 7 × 7 region of mutually impact
when the central green pixel is toggled. Fig. 3 also shows that
the distance of any two green pixels is greater than 3 and the
region of any green pixels’ mutually impact is 7×7. Therefore,
the image should be divided into 4 × 4 nonoverlapped blocks
and the pixels of the subimage in the same layer does not
have an impact on each other when executing the embedding
modifications.

We formulate the layer embedding strategy below. There is
an intermediate image denoted as X′ that is updated after each
layer embedding is finished. The subimage is used to formulate
the layer embedding strategy and we have also improved it as
below. If we extract the pixels and their distortions located
at (a, b) of every block, we obtain the subimage XL and the
corresponding subdistortion map DL by

XL
k,l = X′

i,j (12)

where XL
k,l denotes the (k, l)th values in the intermediate image

X′. DL denotes the distortion values corresponding to XL. The
projection between (i, j) and (k, l) is defined as

i = 4k + a

j = 4l + b (13)

where k ∈ {0, 1, . . . , �(n1/4)� − 1}, l ∈ {0, 1, . . . , � (n2/4)� −
1}.

To verify whether the single-layer embedding strategy has
taken MIEM into account and generates better stego images

or not, the comparisons between the single-layer embedding
strategy and random embedding strategy are set. In the ran-
dom embedding strategy, the pixels in images are randomly
selected but the total number of the pixels is the same as
those in the single-layer embedding strategy, which ensures
the same size of STC’s carrier. Because of the randomness,
the mutual impact cannot be avoided effectively. Then, we
calculate the selected pixel distortions using the same distor-
tion model and apply the STC encoder to embed the secret
message for both two strategies. Fig. 4 shows the results of
the comparisons in terms of the average distortion and average
detection error. Fig. 4(a) illustrates that the single-layer embed-
ding strategy outperforms the random embedding strategy in
the average distortion. With the increase of the payload, the
difference between the average distortion of the two strate-
gies becomes much larger. Although the optimization target
of STC is to minimize D(X, Y), it cannot capture the mutual
impact when toggling adjacent pixels. However, there is no
such effect in single-layer embedding so that the stego images
have lower distortion as we expected. Fig. 4(b) shows that the
single-layer embedding method also outperforms the random
embedding strategy in statistical undetectability. It also shows
that the higher average distortion results in lower steganalysis
performance. Combining those two results, it can be concluded
that the single-layer embedding strategy can improve statistical
undetectability by eliminating MIEM.

B. Multilayer Embedding

Single-layer embedding makes sure that the pixels in the
layer do not have a mutual impact when toggled, but it aban-
dons too many pixels and decreases the capacity of secret
messages. However, embedding secret messages directly in
the cover image causes MIEM and decreases undetectabil-
ity performance. Therefore, we make a balance and expand
the single-layer embedding to multilayer embedding, taking
MIEM into account and enlarging the secret message capacity.

Images can also be divided into multiple layers. Specifically,
the single-layer embedding just makes use of one position
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(a) (b)

Fig. 5. Comparisons between the single-pixel embedding strategy and the multilayer embedding strategy, in terms of (a) average distortion and (b) average
detection error (PE).

(a, b) of the blocks while the multilayer embedding uses all
positions of the blocks. For the position (a, b), the pixels at
(a, b) in every block are extracted to construct the subimage
in the layer L. The relationship among L, a, and b can be
represented as

L = 4a + b (14)

where a, b ∈ {0, 1, 2, 3}. For every L, the subimage sXL is gen-
erated using (12). We also need to divide the secret message
msg into many parts. The secret message msgL embedded in
layer L is represented as

msgL
k = msgpL+k (15)

where msgL
k is the kth bit of msgL, msgpL+k is the (pL + k)th

bit of the original secret message, and p = �(lm/16)� ensures
the secret message divided in an average way. Thus, the set
of index k is as follows:

{
k ∈ {0, 1, . . . , p − 1}, if L < 15
k ∈ {0, 1, . . . , lm − pL − 1}, if L = 15

(16)

where lm is the length of the secret message msg. According
to (16), the length of msgL is lLm = p for the previous 15 layers
and lLm = lm − pL for the last layer.

Herein, we give a brief introduction to the entire embedding
procedure. As Fig. 3(b) is shown, multilayer embedding first
divides the cover image into 4 × 4 blocks and the pixels that
have the same position in their block are in the same layer.
Before embedding secret messages, the secret messages are
divided averagely so that each layer will be embedded the
same payload of secret messages. When performing multilayer
embedding, each layer is orderly calculated their distortion and
embed the secret messages assigned to the layer. It is worth
mentioning that after embedding one layer, the corresponding
layer is updated by the embedded result and prepared to embed
the next layer until all the layers are embedded with secret
messages.

To verify the effectiveness of the multilayer embedding
strategy, we compare the multilayer embedding strategy with
the single-pixel strategy proposed in [14] that directly embeds

secret messages in the entire image ignoring the order of pix-
els. Fig. 5(a) shows that the multilayer embedding strategy
outperforms the single-pixel strategy in the average distortion.
As mentioned earlier, the single-pixel strategy does not con-
sider MIEM and it causes larger distortions. The multilayer
embedding strategy updates the pixel distortions in the sub-
sequent layer after the embedding procedure of the previous
layer is executed. In the embedding procedure of each layer,
the STC encoder makes D(X, Y) as the optimization target,
optimizes the toggled positions, and achieves a much lower
average distortion. Therefore, it provides higher steganogra-
phy performance. Fig. 5(b) also shows that it outperforms the
single-pixel strategy in statistical undetectability.

We conduct experiments to verify that the multilayer embed-
ding strategy reduces MIEMs in a group of adjacent pixels and
design notation G. The MIEM effect can increase the number
of consecutive toggled pixels, which is large in the single-pixel
strategy, while the multilayer embedding strategy avoids this
phenomenon well and thus reduces MIEM. Fig. 6 shows one
of the embedding modification examples of the two strategies.
To quantify such an effect, we design a method to evaluate the
effect of toggling adjacent pixels. When a pixel is toggled, its
adjacent pixels are defined as the pixels in the 7×7 block cen-
tered with it. As is mentioned, the 7×7 block is the region of
mutually impact when the central pixel is toggled. The adja-
cent toggled pixels pair is defined as the pair of the central
pixel of the block and other toggled pixels in the same block.
More adjacent toggled pixel pairs demonstrate that more pix-
els that have MIEM each other are toggled simultaneously.
This phenomenon is not considered by the single-pixel strat-
egy and decreases statistical security. The group of adjacent
toggled pixel pairs G can be represented as

G = {
(i, j, p, q)|�i,j = 1,�p,q = 1

|i − p| ≤ 3, |j − q| ≤ 3

i 	= p or j 	= q} (17)

where � = |X − Y| denotes the embedding changes between
cover image X and the stego image Y, and thus �i,j is 1 when
the (i, j)th pixel is toggled, otherwise is 0, and so is �p,q.
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(a) (b) (c)

Fig. 6. Embedding modifications of the single-pixel strategy and the multilayer embedding strategy when the payload is 0.0313 bpp. (a) Cover image. The
embedding modifications of (b) single-pixel strategy and (c) multilayer embedding strategy.

Then, the number of adjacent toggled pixel pairs N(X, Y) can
be represented as

N(X, Y) = 1

2
|G| (18)

where |G| denotes the size of the group G and we take it a
half considering the symmetric structure.

Fig. 7 shows the result of average N(X, Y) between the two
strategies. It can be found that in the multilayer embedding
strategy, the number of toggled pixel pairs that have a mutual
effect is smaller compared with the other strategy. N(X, Y)

have the same trend as average distortion and the steganalysis
results. We consider that there are two main reasons. On the
one hand, we use the single-layer embedding strategy to make
sure the pixels in the layer do not have the mutual effect to
make the best use of the STC encoder. On the other hand, we
embed secret messages layer by layer using the previous layers
as a prior condition and taking previous modifications into
account. Combing those benefits, the multilayer embedding
progresses much compared with the single-pixel strategy. With
the increase of the payload, the difference between the two
strategies becomes much larger. That is because the higher
payload of the secret messages, the more pixels are toggled,
causing much larger MIEM, which is also explained by the
N(X, Y) experiment.

IV. PROPOSED STEGANOGRAPHIC SCHEME

The entire steganographic scheme is presented detailedly
in this section, including the embedding and extraction
procedure.

A. Embedding Procedure

The block diagram of the embedding procedure is shown
in Fig. 8. Given a cover image X and a secret binary message
msg, the embedding procedure ESTC(X, msg) consists of the
following steps.

1) A secret message msg is averagely divided into
16 nonoverlapped segments using (15), successively
denoted as msgL whose length is lLm.

2) Initialize the intermediate image X′ = X and L = 0 in
the beginning of the procedure.

Fig. 7. Comparison between the single-pixel strategy and the multilayer
embedding strategy in average N(X, Y).

3) Based on the value of L, the distortion map DL cor-
responded to the image XL is extracted and computed
using the intermediate image X′.

4) Reshape XL and DL into a 1-D vector and scramble them
using a seed sL, denoted as uDL and uXL, respectively.

5) Apply uDL, uXL, and msgL with the STC encoder. The
embedded pixels uẌL are obtained by STC encoding.

6) Descramble uẌL using the seed sL and reshape it into
the size of subimage XL, denote as ẌL.

7) Update the intermediate image X′ by using ẌL to replace
XL originally extracted from the image XL.

8) If L < 16, repeat steps 3–7, otherwise, the stego image
Y is obtained, that is, Y = X′.

Note that both the receiver and sender should know the
random seeds sL, which are used to scramble. They can prepare
the parameter of seeds in advance.

B. Extraction Procedure

The block diagram of the extraction procedure is shown
in Fig. 9. Given a stego image Y, the length of the original
messages lm and the random seed sL. We can elaborate the
extraction procedure DSTC(Y, lm) as the following steps.
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Fig. 8. Embedding block diagram.

Fig. 9. Extraction block diagram.

1) Based on the value of L, a stego image Y is correspond-
ingly extracted to construct the embedded subimage ẌL

and lLm is obtained according to (16).
2) Reshape ẌL into a 1-D vector and scramble it using a

seed sL that the receiver and sender share, denoted as
uẌL.

3) Apply message length lLm and uXL with the STC decoder,
and then obtain message segment msgL.

4) If L < 16, repeat steps 1–3, otherwise, the message msg
is obtained by successively concatenate msgL in order.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

All the experiments are conducted on the BOSSbase
ver.1.01 database [30], which contains 10 000 grayscale
images of size 512 × 512 pixels. In the experiments, we
resample all the grayscale images into the size of 256 × 256
pixels and transfer them into halftone images using error dif-
fusion [31]. It is worth mentioning that error diffusion is a
classic and effective method that guarantees the visual quality
of the generated halftone images well. The proposed scheme
does not depend on a specific halftoning technique according
to the statistical distortion model. In this article, all experi-
ments are conducted on the image datasets that are generated
based on the error diffusion method. Then, the image database
is divided into two sets of equal size, one used for training
and the other used for accuracy evaluation. The performance
is measured by the detection error rate PE under the equal

probability of cover and stego images, defined as

PE = 1

2
(PFA + PMD) (19)

where PFA and PMD stand for the probabilities of false alarm
and miss detection, respectively. The final statistical security is
accessed by the average error rate PE, which is calculated over
ten random splits of the datasets. It should be noted that the
statistical security of schemes is stronger when PE is larger.

B. Comparisons of the Distortion Model

Experiments are conducted to compare the steganalysis
performance among different distortion models [13], [14].
Note that the proposed model used in the experiments is the
combined model that has been elaborated in Section II-B and
the dimensionality of the histogram is reduced to 500 experi-
mentally. A good distortion model should effectively evaluate
the embedding distortion and it can improve the statistical
security of steganography [4], [20]. In this section, to eval-
uate the performance of the proposed distortion model, we
compare it with FDM [13] and PDM [14], which have been
discussed in Section I.

For the fair comparisons, an ideal encoder EI(X, lI, DT) is
designed to simulate an optimal modification, which includes
the following steps.

1) Use the test distortion model DT to calculate a distortion
map that corresponds to the image X.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Performance comparisons of the steganographic schemes with different distortion models Dρ in terms of the average detection error (PE), while
attacked by the detectors applied with (a) PMMTM [26], (b) LGLTP [22], (c) RLCM [27], (d) RLGL [32], (e) DLCM [33], and (f) PHD [34].

2) Obtain the embedding positions which causes the lowest
distortion and replacing the pixel in the selected position
with a pseudorandom binary bit.

3) Set pixels within 3 × 3 block that surround the selected
pixel in step 2 to be nonoptional.

4) Repeat steps 2 and 3 until lI length pixels in X are
replaced and output the modified image.

Based on the encoder, the stego images with the lowest total
distortion are correspondingly obtained by a specific distortion
model. When lI parameter changes, a better distortion model
will generate the stego images with better statistical security.
Via the designed encoder, we compare the security of different
distortion models combined with EI(X, lI, DT) in the cases of
lI ∈ {256, 512, 1024, 1536, 2048}, that is, the corresponding
payloads of {0.0039, 0.0078, 0.0156, 0.0234, 0.0313} bpp.

The statistical security is represented by the performance for
resisting the state-of-the-art steganalysis [22], [26], [27], [32].
PMMTM [26] was proposed by focusing on the relation-
ship between pixel mesh transitions. LGLTP [22] is presented
to consider a larger local texture pattern that contains more
information on the image content edge. RLCM [27] is the
gray-level run length combined with co-occurrence matrices
and RLGL [32] is the gray-level run length combined with
gap length matrices with the purpose of capturing the differ-
ent gray runs and the interpixel relationship between the cover
and stego images. DLCM [33] is extracted by a distortion-level
co-occurrence matrix that represents the toggled pixels causing
significant changes in neighboring distortion. PHD [34] was
proposed by Chiew and Pieprzyk to capture the histogram dif-
ference between cover and stego images based on 3 × 3 pixel

blocks. PMMTM, RLCM, RLGL, DLCM, and PHD are com-
bined with soft-margin SVMs [29] with an optimized Gaussian
kernel to construct the detectors while LGLTP combined with
the ensemble classifiers (ECs) [35] with the Fisher linear dis-
criminant as the base learner are trained to build the detector.
The detection performance is measured by PE which has been
mentioned in Section V-A.

Fig. 10 illustrates that the proposed distortion model outper-
forms the others, which indicates that the proposed model eval-
uates the embedding distortion more effectively. It is observed
that the scheme with the proposed distortion model obtains
a significant improvement while attacked by the detectors
applied with PMMTM and LGLTP. Stego images generated
according to both FDM and PDM are easily identified by the
detector applied with LGLTP shown in Fig. 10(b), but the
steganographic scheme applied with the proposed distortion
model achieves high steganalysis performance because the sta-
tistical region of the proposed model is larger than those of
LGLTP. Fig. 10(c), (d), and (f) shows that the performance
obtained by the proposed distortion model is slightly better
than the other models. In brief, the proposed distortion model
can better evaluate the embedding distortion compared with
FDM and PDM, thus applying it with the STC encoder can
improve the statistical undetectability.

C. Comparisons of Steganographic Schemes

We have evaluated the performance of the distortion model
and the embedding strategy separately. In this section, we
combine them and evaluate the performance of the entire
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Fig. 11. Performance comparisons of different steganographic schemes in terms of the average detection error (PE), while attacked by the detectors applied
with (a) PMMTM [26], (b) LGLTP [22], (c) RLCM [27], (d) RLGL [32], (e) DLCM [33], and (f) PHD [34].

schemes to compare the statistical security of the different
steganographic schemes.

Schemes proposed in [13] (denoted as FDMS), [14]
(denoted as PDMS), [11] (denoted as DHSPT), [12] (denoted
as PTHVS), and [36] (denoted as PDTS) are employed for
comparisons. Both FDMS and PDMS minimize the toggling
distortion based on the STC encoder, but superpixels are
regarded as STC’s carriers in the former scheme while the
latter scheme considers single pixels. DHSPT is presented to
improve its basic scheme DHPT by wisely choosing the slave
pixels so that reducing the “salt-and-pepper” clusters. On the
basis of DHSPT, to further improve the selection of candidate
slave pixels, PTHVS is proposed by designing a visual distor-
tion model according to a larger local region. PDTS uses the
pixel density transition to embed messages and optimizes the
visual quality by selecting suitable density blocks.

Throughout the experiments, the pseudorandom binary
sequences are used as secret messages. The message length lm
is set via different parameters of different schemes. We com-
pare the proposed scheme with other steganographic schemes
under the average payloads of the image database. In FDMS,
the scheme set the length of message segment θm as {8, 16},
the number of elements in superpixels θI as {32, 42, 52}, and
the length of cover vectors as 82, that is, the payloads of
{0.0044, 0.0078, 0.0088, 0.0121, 0.0156, 0.0243} bpp. The
other steganographic schemes are only limited by the param-
eter lm that is set as {512, 768, 1024, 1280, 1536, 2048}, that
is, the payloads of {0.0078, 0.0117, 0.0156, 0.0195, 0.0234,
0.0313} bpp. The steganalysis and the detection performance
criterion used in Section V-B are still employed here.

The performance comparisons of different steganographic
schemes are shown in Fig. 11. It can be observed that
DHSPT and PTHVS schemes do not obtain high statistical
security when resisting all the steganalysis presented in the
figure, for the reason that the number of embedding mod-
ifications in their schemes is large which is equal to the
secret message length and thus causing a large embedding
distortion. The other schemes use the STC encoder to embed
the secret messages with the same length by toggling fewer
pixels, which results in less total distortion. Compared with
FDMS and PDMS, the proposed scheme obtains the best secu-
rity while attacked by the detectors applied with PMMTM,
LGLTP, RLCM, and PHD. Particularly attacked by the detec-
tor applied with LGLTP and PHD, the proposed scheme
achieves a significant improvement compared with PDMS and
DLCM which has the second-best security. Fig. 11(d) and (e)
illustrates that the proposed scheme and PDMS can provide
equal security performance but in other steganalysis schemes,
the proposed method outperforms PDMS. In conclusion, the
proposed method outperforms other state-of-the-art methods
under multiple steganalysis methods’ attack and achieves the
highest security performance.

D. Comparisons of Visual Quality

To better evaluate the visual imperceptibility of the stego
images in the compared steganographic schemes, we have
supplemented human visual perception and objective vision
imperceptibility as follows.

For human visual perception, we take one of the complex
texture halftone images as an example and show the unnatural

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 29,2021 at 02:47:28 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

(a) (b) (c) (d)

Fig. 12. Image visual quality comparison of different steganography schemes on halftone image. (a) Original halftone image of size 256 × 256. (b)–(d)
Stego images with 0.023 bpp secret messages embedded by FDMS [13], PDMS [14], and the proposed scheme and the red boxes of each subfigure show the
unnatural changes after embedding the same secret messages.

(a) (b) (c)

Fig. 13. Visual quality comparisons of different steganographic schemes. (a) PSNR. (b) WSNR [37]. (c) UQI [38].

changes after embedding the same secret messages. Fig. 12
illustrates the experimental results. The red boxes of each
subfigure show the unnatural changes after embedding the
same secret messages. It shows that FDMS [13] makes more
unnatural changes compared to PDMS [14] and the proposed
scheme. However, it is hard to directly compare PDMS and
the proposed scheme. Therefore, we also conduct experiments
on the objective visual quality to compare the visual quality
more precisely.

For objective vision imperceptibility, we have conducted
experiments on different objective visual quality measure-
ments, peak signal-to-noise ratio (PSNR), weighted signal-to-
noise ratio (WSNR) [37], and universal image quality index
(UQI) [38]. PSNR in halftone image steganography measures
the number of toggled pixels. A higher PSNR means better
visual imperceptibility and the stego image is perceived more
similar to the cover image. WSNR [37] evaluates the visual
performance for halftone images by weighting the stego image
according to a contrast sensitivity function (CSF). CSF is the
linear approximation of the human visual system assuming that
the human eyes do not focus on one point but freely moves the
eyes around the image. A higher WSNR means higher visual
quality. UQI [38] is designed for halftone images, which con-
siders the different attributes, including brightness, contrast,
texture, orientation, etc. The dynamic range of UQI is [−1, 1],
and the best value 1 is achieved only if the stego image is fully
equal to the cover image.

Fig. 13 shows that in terms of PSNR and WSNR, the stego
images generated by the proposed scheme compared with the
other schemes maintain the visual quality better, for the rea-
son that the proposed scheme can toggle fewer pixels at the
same embedding capacity. In terms of UQI, the performance
of the proposed scheme is close to those of PDMS [14]. PDMS
presented a PDM that aims at predicting the pixel value sta-
tistically so that the stego image is as close as possible to
the cover image. In conclusion, the objective visual quality
of stego images generated by the proposed scheme achieves
good performance.

E. Analysis of Computational Complexity

The complexity of the proposed method can be analyzed in
two parts. The first part is the calculation of pixel distortion.
Since the hyperplane vector is pretrained and can be directly
used in distortion measurement, the complexity of the calcu-
lation of pixel distortion is approximately equal to the size of
the pattern block, which is a constant 4 × 4. The second part
is the complexity of multilayer embedding. Because for each
layer, only the pixels in the layer are used to embed secret
messages, the distortion of each pixel is calculated once in
the multilayer embedding. Assume the size of cover image is
n1 × n2. The time complexity of embedding secret messages
is O(n1 × n2) while the extraction is the reverse process of
embedding secret messages and have the same complexity.
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It is worth mentioning that the proposed scheme only needs
to compute the pixel distortion once for each pixel, which is
equal to the single-pixel embedding strategy. Therefore, the
two strategies have the same computational complexity, which
is O(n1 ×n2). In addition, those schemes based on the single-
pixel embedding strategy are performed by calculating the
distortion of each pixel once and have the same time com-
plexity. As a result, although the proposed scheme performs
a more complex embedding strategy, it has the same com-
putational complexity but succeeds to earn improvement in
anti-steganalysis performance.

We have also made our code of the proposed scheme open-
source in the GitHub.1 Everyone is able to access the code of
the proposed scheme.

VI. CONCLUSION

In this article, a halftone image steganographic scheme
based on a feature space and layer embedding was proposed to
achieve high statistical security. A better design of the image
model can enhance anti-steganalysis performance. A charac-
terization method was first designed according to the statistics
of 4 × 4 pixel blocks to construct the feature space. Upon
it, a generalized blind steganalyzer with high steganalysis
performance was used as a guide for designing a distor-
tion model. As a result, an image model was defined in
the hybrid feature space to measure the embedding distor-
tion, which outperforms some state-of-the-art models. Beyond
that, the embedding strategy also has a huge impact on the
statistical security of steganography. The single-layer and
multilayer embedding strategies were proposed based on the
proposed distortion model. In single-layer embedding, the cal-
culated pixel distortions are independent and thus it eliminates
the MIEMs. The multilayer embedding strategy is expanded
from the single-layer embedding to solve the shortage of
low message capacity and also took MIEM into account.
In brief, the layer embedding strategy reduced MIEM and
improved statistical security. Comparisons with prior schemes
have demonstrated that the entire steganographic scheme can
achieve high statistical security of anti-steganalysis.
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[35] J. Kodovskỳ, J. Fridrich, and V. Holub, “Ensemble classifiers for ste-
ganalysis of digital media,” IEEE Trans. Inf. Forensics Security, vol. 7,
pp. 432–444, 2012.

[36] W. Lu, Y. Xue, Y. Yeung, H. Liu, J. Huang, and Y. Shi, “Secure
halftone image steganography based on pixel density transition,”
IEEE Trans. Depend. Secure Comput., early access, Aug. 6, 2019,
doi: 10.1109/TDSC.2019.2933621.

[37] M. Valliappan, B. L. Evans, D. A. Tompkins, and F. Kossentini,
“Lossy compression of stochastic halftones with JBIG2,” in Proc. Int.
Conf. Image Process. (Cat. 99CH36348), vol. 1. Kobe, Japan, 1999,
pp. 214–218.

[38] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE
Signal Process. Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002.

Wei Lu (Member, IEEE) received the B.S. degree
in automation from Northeast University, Shenyang,
China, in 2002, and the M.S. and Ph.D. degrees
in computer science from Shanghai Jiao Tong
University, Shanghai, China, in 2005 and 2007,
respectively.

He was a Research Assistant with Hong Kong
Polytechnic University, Hong Kong, from 2006 to
2007. He is currently a Professor with the School of
Data and Computer Science, Sun Yat-sen University,
Guangzhou, China. His research interests include

multimedia forensics and security, data hiding, privacy protection, and com-
puter vision.

Prof. Lu is an Associate Editor for Signal Processing and the Journal of
Visual Communication and Image Representation.

Junjia Chen received the B.S. degree in information
engineering from South China Normal University,
Guangzhou, China, in 2017, and the M.S. degree
in computer science from Sun Yat-sen University,
Guangzhou, in 2020.

His research interests include multimedia security
and data hiding.

Junhong Zhang received the B.S. degree in com-
puter science and technology from Sun Yat-sen
University, Guangzhou, China, in 2018, where he is
currently pursuing the M.S. degree with the School
of Data and Computer Science.

His research interests include multimedia security
and data hiding.

Jiwu Huang (Fellow, IEEE) received the B.S.
degree from Xidian University, Xi’an, China, in
1982, the M.S. degree from Tsinghua University,
Beijing, China, in 1987, and the Ph.D. degree from
the Institute of Automation, Chinese Academy of
Sciences, Beijing, in 1998.

He is currently a Professor with the College
of Information Engineering, Shenzhen University,
Shenzhen, China. His current research interests
include multimedia forensics and security.

Prof. Huang was the General Co-Chair of IEEE
Workshop on Information Forensics and Security in 2013, and the TPC
Co-Chair of IEEE Workshop on Information Forensics and Security in 2018.
He is an Associate Editor for IEEE TRANSACTIONS ON INFORMATION

FORENSICS AND SECURITY. He is a Member of the IEEE Signal Processing
Society Information Forensics and Security Technical Committee.

Jian Weng (Member, IEEE) received the B.S. and
M.S. degrees in computer science and engineering
from the South China University of Technology,
Guangzhou, China, in 2000 and 2004, respectively,
and the Ph.D. degree in computer science and
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2008.

From 2008 to 2010, he held a postdoctoral
position with the School of Information Systems,
Singapore Management University, Singapore. He is
currently a Professor and the Vice President with

Jinan University, Guangzhou. He has published over 100 papers in cryptogra-
phy and security conferences and journals, such as CRYPTO, EUROCRYPT,
ASIACRYPT, IEEE TRANSACTIONS ON CLOUD COMPUTING, Protein
Kinase C, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, and IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING. His research interests include public-key cryptography, cloud
security, and blockchain.

Prof. Weng served as the PC Co-Chair or PC Member for more than 30
international conferences. He also serves as an Associate Editor of IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Yicong Zhou (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Hunan
University, Changsha, China, in 1992, and the M.S.
and Ph.D. degrees in electrical engineering from
Tufts University, Medford, MA, USA, in 2008 and
2010, respectively.

He is currently an Associate Professor and
the Director of the Vision and Image Processing
Laboratory, Department of Computer and
Information Science, University of Macau, Macau,
China. His research interests include image pro-

cessing, computer vision, machine learning, and multimedia security.
Dr. Zhou was a recipient of the Third Price of Macao Natural Science

Award in 2014 and 2020. He is the Co-Chair of the Technical Committee
on Cognitive Computing in the IEEE Systems, Man, and Cybernetics
Society. He serves as an Associate Editor for IEEE TRANSACTIONS ON

NEUTRAL NETWORKS AND LEARNING SYSTEMS, IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, and four
other journals. He is a Senior Member of the International Society for
Optical Engineering.

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 29,2021 at 02:47:28 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TDSC.2019.2933621

